编写有趣味性的教案可以增加学生对学习的兴趣和动力,教案的设计能够帮助教师创造出富有挑战性和启发性的学习任务,下面是怎么写范文网小编为您分享的二次函数教案8篇,感谢您的参阅。
二次函数教案篇1
大纲要求
1. 理解二次函数的概念;
2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;
3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
4. 会用待定系数法求二次函数的解析式;
5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向
抛物线y=ax2+bx+c(a≠0)的顶点是 ,对称轴是 ,当a>0时,抛物线开口向上,当a
抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h.
考查重点与常见题型
1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:
已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图像经过原点,则m的值是
2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:
如果函数y=kx+b的图像在第一、二、三象限内,那么函数
y=kx2+bx-1的图像大致是( )
y y y y
1 1
0 x o-1 x 0 x 0 -1 x
a b c d
3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:
已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=,求这条抛物线的解析式。
4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:
已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-
(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.
5.考查代数与几何的综合能力,常见的作为专项压轴题。
习题1:
一、填空题:(每小题3分,共30分)
1、已知a(3,6)在第一象限,则点b(3,-6)在第 象限
2、对于y=-,当x>0时,y随x的增大而
3、二次函数y=x2+x-5取最小值是,自变量x的`值是
4、抛物线y=(x-1)2-7的对称轴是直线x=
5、直线y=-5x-8在y轴上的截距是
6、函数y=中,自变量x的取值范围是
7、若函数y=(m+1)xm2+3m+1是反比例函数,则m的值为
8、在公式=b中,如果b是已知数,则a=
9、已知关于x的一次函数y=(m-1)x+7,如果y随x的增大而减小,则m的取值范围是
10、 某乡粮食总产值为m吨,那么该乡每人平均拥有粮食y(吨),与该乡人口数x的函数关系式是
二、选择题:(每题3分,共30分)
11、函数y=中,自变量x的取值范围 ( )
(a)x>5 (b)x<5 (c)x≤5 (d)x≥5
12、抛物线y=(x+3)2-2的顶点在 ( )
(a)第一象限 (b) 第二象限 (c) 第三象限 (d) 第四象限
13、抛物线y=(x-1)(x-2)与坐标轴交点的个数为 ( )
(a)0 (b)1 (c)2 (d)3
14、下列各图中能表示函数和在同一坐标系中的图象大致是( )
(a) (b) (c) (d)
15.平面三角坐标系内与点(3,-5)关于y轴对称点的坐标为( )
(a)(-3,5) (b)(3,5) (c)(-3,-5) (d)(3,-5)
16.下列抛物线,对称轴是直线x=的是( )
(a) y=x2(b)y=x2+2x(c)y=x2+x+2(d)y=x2-x-2
17.函数y=中,x的取值范围是( )
(a)x≠0 (b)x> (c)x≠ (d)x<
18.已知a(0,0),b(3,2)两点,则经过a、b两点的直线是( )
(a)y=x (b)y=x (c)y=3x (d)y=x+1
19.不论m为何实数,直线y=x+2m与y=-x+4 的交点不可能在( )
(a)第一象限 (b)第二象限 (c)第三象限 (d)第四象限
20.某幢建筑物,从10米高的窗口a用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直,(如图)如果抛物线的最高点m离墙1米,离地面米,则水流下落点b离墙距离ob是( )
(a)2米 (b)3米 (c)4米 (d)5米
二次函数教案篇2
一、教材分析
本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a
二、学情分析
本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标
(一)知识与能力目标
1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;
2. 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标
通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标
1. 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;
2. 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点
1.重点
通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2.难点
二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与 设计说明
本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程
教学环节(注明每个环节预设的时间)
(一)提出问题(约1分钟)
教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?
学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。
(二)探究新知
1.探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)
教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。
学生活动:讨论解决
目的:激发兴趣
2.配方求解顶点坐标和对称轴(约5分钟)
教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)
=0.5(x2-12x+36-36+42)
=0.5(x-6)2+3
教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。
学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。
目的:即加深对本课知识的认知有增强了配方法的应用意识。
3.画出该二次函数图像(约5分钟)
教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。
学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。
目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。
4.探究y=-2x2-4x+1的函数图像特点(约3分钟)
教师活动:教师提出问题。找学生板演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。
学生活动:学生独立完成。
目的:研究a
5.结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)
教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a
学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。
目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。
6.简单应用(约11分钟)
教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。
教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。
学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。
目的:巩固新知
课堂小结(2分钟)
1. 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?
2. 你对本节课有什么感想或疑惑?
布置作业(1分钟)
1. 教科书习题22.1第6,7两题;
2. 《课时练》本节内容。
板书设计
提出问题 画函数图像 学生板演练习
例题配方过程
到顶点式的配方过程 一般式相关知识点
教学反思
在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。
我认为优点主要包括:
1.教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。
2.教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3.板书字体端正,格式清晰明了,突出重点、难点。
4.我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。
所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:
1.知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;
2.一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;
3.学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。
4.合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。
重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。
二次函数教案篇3
教学目标:
1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系。
教学过程:
一、提出问题导入新课
1.二次函数y=2x2的图象具有哪些性质?
2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?
二、学习新知
1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较
问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?
同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?
让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?
小组相互说说(一人记录,其余组员补充)
2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做
在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?
三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?
四、作业: 在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像
五:板书
二次函数教案篇4
二次函数的图像
略阳天津高级中学 杨 娜
课 型:新授课 课时安排: 1课时 教学目标:
1、理解二次函数中a,b,c,h,k对其图像的影响。
2、领会二次函数图像平移的研究方法,并能迁移到其他函数图像的研究,而提高识图和用图能力。
3、培养学生数形结合的思想意识。 重点难点: 1.教学重点:二次函数图像平移变换规律及应用
2.教学难点:理解平移对解析式的影响及如何利用平移变换规律求解析式,并能把平移变换规律迁移到一般函数. 教学过程:
一、导入新课
在初中我们已经学过二次函数,知道其图像为抛物线,并了解其图像的开口方向,对称轴,顶点等特征,本节课将进一步研究一般的二次函数的性质。二、讲授新课
提出问题1 二次函数y?ax(a?0)的图像与二次函数y?x的图像之间有什么关系? 1.我们先画出y?x 的图像,并在此基础上画出y?2x的图像。
学生阅读课本41页并在练习本上作图(教师用几何画板演示)2.学生阅读课本41页,并动手实践。
3.概括:二次函数y?ax(a?0)的图像可以由y?x的图像个点的纵坐标变为原来的a倍得到。 4.用几何画板演示a对开口大小得影响。5.抽象概括
?二次函数y=ax2(a≠0)的图像可由的y=x2图像各点纵坐标 变为原来的a倍得到。
?a决定了图像的开口方向:a>o开口向上,a?a决定了图像在同一直角坐标系中的开口大小:|a|越小图像开口就越大 6.练习列二次函数图像开口,按从小到大的顺序排列为_ 11(1)f(x)=x2;(2)f(x)=x242
问题
212(3)f(x)=-x;(4)f(x)=-3x23函数y?a(x?h)2?k(a?0)的图像与函数y?ax2(a?0)的图像之间有什么关系呢?
1.我们先一起回顾y?2x2与y=2(x+1)2+3图像的关系。(教师用几何画板演示)
在初中我们已经知道,只要把y?2x2的图像向左平移1个单位长度,再向上平移3个单位长度,就可以得到y=2(x+1)2+3的图像。它们形状相同,位置不同(如图2-22)。2.学生动手实践想想并回答课本上的问题2。3.概括:二次函数y=a(x+h)2+k(a?0), ①a决定了二次函数图像的开口大小及方向;
而且“a正开口向上,a负开口向下”;|a|越大开口越小; ②h决定了二次函数图像的左右平移,而且“h正左移,h负右移”; ③k决定了二次函数图像的上下平移,而且“k正上移,k负下移”。
问题3 y?ax(a?0)和y?ax?bx?c(a?0)的图像之间有什么关系? 1.我们先来回顾y?2x与y?2x?4x?1的图像关系(教师在黑板演示,可以转化为顶点式)
至此我们知道把y?2x的图像向左平移1个单位长度,再向下平移3个单位长度,就可以得到y?2x?4x?1的图像(如图2-23)。
2.动画演示y?ax?bx?c(a?0)中a,b,c对图像的影响。 3.概括:
⑴一般地,二次函数y=ax2+bx+c(a≠0),通过配方可以得到它的恒等形式y=a(x+h)2 +k,从而知道可以由y=ax2 的图像
通过平移得到y=ax2+bx+c(a≠0)的图像.⑵a决定了二次函数图像的开口大小及方向;
而且“a正开口向上,a负开口向下”;|a|越大开口越小;b影响了图像的位置不仅上下平移而且左右平移;c决定了图像与坐标轴y轴的交点位置,c>0 交点在y轴上半轴,c三、巩固练习
1.完成课后练习题1,2,3 2.把下列二次函数一般式化为顶点式:
① y?x2?8x?9 ② y??2x2?12x?16 ③y?ax2?bx?c(a?0)3.把y?x2的图像经过怎样平移可得到y?x2?8x?9的图像?
4.将二次函数y=3x2的图像平行移动,顶点移到(-3,2),则它的解式为?
5..二次函数y=f(x)与y=g(x)的图像开口大小相同,开口方向也相同,已知函数g(x)=x2+1,f(x)图像的顶点为(3,2),则f(x)的表达式为什么? 四.小结
1.回顾二次函数y?a(x?h)2?k(a?0)中,h,k对函数图像有何影响?
二次函数y?ax?bx?c(a?0)中,确定函数开口大小及方向的参数是什么?确定函数位置的参数是什么?
2.我们经历了y?x到y?ax2(a?0),y?ax2(a?0)到y?a(x?h)2?k(a?0),通过这个过程,我们就能体会y?ax2(a?0)到y?ax2?bx?c(a?0)的图像变化过程,到研究一般函数的拓展过程。 五.作业
完成课后习题题。六.板书设计
二次函数再研究
问题1 演算过程 练习题 问题2 结论 问题3 附加题:
将二次函数y??2x的图像平移顶点移到下列各点,写出对应的函数解析式。⑴(4,0);⑵(0,-2);⑶(-3,2)⑷(3,-1)222
二次函数教案篇5
一、教材分析
1.教材的地位和作用
(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。
(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。
(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。
2.课标要求:
①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。
②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。
③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。
④会根据二次函数的性质解决简单的实际问题。
3.学情分析:
(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。
(2)学生的分析、理解能力较学习新课时有明显提高。
(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。
(4)学生能力差异较大,两极分化明显。
4.教学目标
◆认知目标
(1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。
◆能力目标
提高学生对知识的整合能力和分析能力。
◆ 情感目标
制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。
5.教学重点与难点:
重点:(1)掌握二次函数y=图像与系数符号之间的关系。
(2) 各类形式的二次函数解析式的求解方法和思路。
(3)本节课主要目的,对历届中考题中的二次函数题目进行类比分析,达到融会贯通的作用。
难点:(1)已知二次函数的解析式说出函数性质
(2)运用数形结合思想,选用恰当的数学关系式解决几何问题.
二、教学方法:
1. 运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。
2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。
3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。
三、学法指导:
1.学法引导
“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。
2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”
4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。
四、教学过程:
1、教学环节设计:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.
本节课的教学设计环节:
◆创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。
◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。
◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。
安排三个层次的练习。
(一)从定义出发的简单题目。
(二)典型例题分析,通过反馈使学生掌握重点内容。
(三)综合应用能力提高。
既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的`数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。
(四)方法与小结
由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。
2、作业设计:(见课件)
3、板书设计:(见课件)
五、评价分析:
本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。
二次函数教案篇6
二次函数的应用
教学设计思想
本节主要研究的是与二次函数有关的实际问题,重点是实际应用题,在教学过程中让学生运用二次函数的知识分析问题、解决问题,在运用中体会二次函数的实际意义。二次函数与一元二次方程、一元二次不等式有密切联系,在学习过程中应把二次函数与之有关知识联系起来,融会贯通,使学生的认识更加深刻。另外,在利用图像法解方程时,图像应画得准确一些,使求得的解更准确,在求解过程中体会数形结合的思想。
教学目标:
1、知识与技能
会运用二次函数计其图像的知识解决现实生活中的实际问题。
2、过程与方法
通过本节内容的学习,提高自主探索、团结合作的能力,在运用知识解决问题中体会二次函数的应用意义及数学转化思想。
3、情感、态度与价值观
通过学生之间的讨论、交流和探索,建立合作意识和提高探索能力,激发学习的兴趣和欲望。
教学重点:
解决与二次函数有关的实际应用题。
教学难点:
二次函数的应用。
教学媒体:
幻灯片,计算器。
教学安排:
3课时。
教学方法:
小组讨论,探究式。
教学过程:
第一课时:
Ⅰ。情景导入:
师:由二次函数的一般形式y= (a0),你会有什么联想?
生:老师,我想到了一元二次方程的一般形式 (a0)。
师:不错,正因为如此,有时我们就将二次函数的有关问题转化为一元二次方程的问题来解决。
现在大家来做下面这两道题:(幻灯片显示)
1、解方程 。
2、画出二次函数y= 的图像。
教师找两个学生解答,作为板书。
Ⅱ。新课讲授
同学们思考下面的问题,可以共同讨论:
1、二次函数y= 的图像与x轴交点的横坐标是什么?它与方程 的根有什么关系?
2、如果方程 (a0)有实数根,那么它的根和二次函数y= 的图像与x轴交点的横坐标有什么关系?
生甲:老师,由画出的图像可以看出与x轴交点的横坐标是-1、2;方程的两个根是-1、2,我们发现方程的两个解正好是图像与x轴交点的横坐标。
生乙:我们经过讨论,认为如果方程 (a0)有实数根,那么它的根等于二次函数y= 的图像与x轴交点的横坐标。
师:说的很好;
教师总结:一般地,如果二次函数y= 的图像与x轴相交,那么交点的横坐标就是一元二次方程 =0的根。
师:我们知道方程的两个解正好是二次函数图像与x轴的两个交点的横坐标,那么二次函数图像与x轴的交点问题可以转化为一元二次方程的根的问题,我们共同研究下面问题。
[学法]:通过实例,体会二次函数与一元二次方程的关系,解一元二次方程实质上就是求二次函数为0的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
问题:已知二次函数y= 。
(1)观察这个函数的图像(图34-9),一元二次方程 =0的两个根分别在哪两个整数之间?
(2)①由在0至1范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到十分位的正根吗?
x 0 0.1 0.2[ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y -1 -0.89 -0.76 -0.61 -0.44 -0.25 -0.04 -0.19 0.44 0.71 1
②由在0.6至0.7范围内的x值所对应的y值(见下表),你能说出一元二次方程 =0精确到百分位的正根吗?
x 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70
y -0.040 -0.018 0.004 0.027 0.050 0.073 0.096 0.119 0.142 0.166 0.190
(3)请仿照上面的方法,求出一元二次方程 =0的另一个精确到十分位的根。
(4)请利用一元二次方程的求根公式解方程 =0,并检验上面求出的近似解。
第一问很简单,可以请一名同学来回答这个问题。
生:一个根在(-2,-1)之间,另一个在(0,1)之间;根据上面我们得出的结论。
师:回答的很正确;我们知道图像与x轴交点的横坐标就是方程的根,所以我们可以通过观看图象就能说出方程的两个根。现在我们共同解答第(2)问。
教师分析:我们知道方程的一个根在(0,1)之间,那么我们观看(0,1)这个区间的图像,y值是随着x值的增大而不断增大的,y值也是从负数过渡到正数,而当y=0时所对应的x值就是方程的根。现在我们要求的是方程的近似解,那么同学们想一想,答案是什么呢?
生:通过列表可以看出,在(0.6,0.7)范围内,y值有-0.04至0.19,如果方程精确到十分位的正根,x应该是0.6。
类似的,我们得出方程精确到百分位的正根是0.62。
对于第三问,教师可以让学生自己动手解答,教师在下面巡视,观察其中发现的问题。
最后师生共同利用求根公式,验证求出的近似解。
教师总结:我们发现,当二次函数 (a0)的图像与x轴有交点时,根据图像与x轴的交点,就可以确定一元二次方程 的根在哪两个连续整数之间。为了得到更精确的近似解,对在这两个连续整数之间的x的值进行细分,并求出相应得y值,列出表格,这样就可以得到一元二次方程 所要求的精确度的近似解。
Ⅲ。练习
已知一个矩形的长比宽多3m,面积为6 。求这个矩形的长(精确到十分位)。
板书设计:
二次函数的应用(1)
一、导入 总结:
二、新课讲授 三、练习
第二课时:
师:在我们的实际生活中你还遇到过哪些运用二次函数的实例?
生:老师,我见过好多。如周长固定时长方形的面积与它的长之间的关系:圆的面积与它的直径之间的关系等。
师:好,看这样一个问题你能否解决:
活动1:如图34-10,张伯伯准备利用现有的一面墙和40m长的篱笆,把墙外的空地围成四个相连且面积相等的矩形养兔场。
回答下面的问题:
1、设每个小矩形一边的长为xm,试用x表示小矩形的另一边的长。
2、设四个小矩形的总面积为y ,请写出用x表示y的函数表达式。
3、你能利用公式求出所得函数的图像的顶点坐标,并说出y的最大值吗?
4、你能画出这个函数的图像,并借助图像说出y的最大值吗?
学生思考,并小组讨论。
解:已知周长为40m,一边长为xm,看图知,另一边长为 m。
由面积公式得 y= (x )
化简得 y=
代入顶点坐标公式,得顶点坐标x=4,y=5。y的最大值为5。
画函数图像:
通过图像,我们知道y的最大值为5。
师:通过上面这个例题,我们能总结出几种求y的最值得方法呢?
生:两种;一种是画函数图像,观察最高(低)点,可以得到函数的最值;另外一种可以利用顶点坐标公式,直接计算最值。
师:这位同学回答的很好,看来同学们是都理解了,也知道如何求函数的最值。
总结:由此可以看出,在利用二次函数的图像和性质解决实际问题时,常常需要根据条件建立二次函数的表达式,在求最大(或最小)值时,可以采取如下的方法:
(1)画出函数的图像,观察图像的最高(或最低)点,就可以得到函数的最大(或最小)值。
(2)依照二次函数的性质,判断该二次函数的开口方向,进而确定它有最大值还是最小值;再利用顶点坐标公式,直接计算出函数的最大(或最小)值。
师:现在利用我们前面所学的知识,解决实际问题。
活动2:如图34-11,已知ab=2,c是ab上一点,四边形acde和四边形cbfg,都是正方形,设bc=x,
(1)ac=______;
(2)设正方形acde和四边形cbfg的总面积为s,用x表示s的函数表达式为s=_____.
(3)总面积s有最大值还是最小值?这个最大值或最小值是多少?
(4)总面积s取最大值或最小值时,点c在ab的什么位置?
教师讲解:二次函数 进行配方为y= ,当a0时,抛物线开口向上,此时当x= 时, ;当a0时,抛物线开口向下,此时当x= 时, 。对于本题来说,自变量x的最值范围受实际条件的制约,应为02。此时y相应的就有最大值和最小值了。通过画出图像,可以清楚地看到y的最大值和最小值以及此时x的取值情况。在作图像时一定要准确认真,同时还要考虑到x的取值范围。
解答过程(板书)
解:(1)当bc=x时,ac=2-x(02)。
(2)s△cde= ,s△bfg= ,
因此,s= + =2 -4x+4=2 +2,
画出函数s= +2(02)的图像,如图34-4-3。
(3)由图像可知:当x=1时, ;当x=0或x=2时, 。
(4)当x=1时,c点恰好在ab的中点上。
当x=0时,c点恰好在b处。
当x=2时,c点恰好在a处。
[教法]:在利用函数求极值问题,一定要考虑本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取得范围内画。
练习:
如图,正方形abcd的边长为4,p是边bc上一点,qpap,并且交dc与点q。
(1)rt△abp与rt△pcq相似吗?为什么?
(2)当点p在什么位置时,rt△adq的面积最小?最小面积是多少?
小结:利用二次函数的增减性,结合自变量的取值范围,则可求某些实际问题中的极值,求极值时可把 配方为y= 的形式。
板书设计:
二次函数的应用(2)
活动1: 总结方法:
活动2: 练习:
小结:
第三课时:
我们这部分学习的是二次函数的应用,在解决实际问题时,常常需要把二次函数问题转化为方程的问题。
师:在日常生活中,有哪些量之间的关系是二次函数关系?大家观看下面的图片。
(幻灯片显示交通事故、紧急刹车)
师:你知道两辆车在行驶时为什么要保持一定的距离吗?
学生思考,讨论。
师:汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,这段距离叫做刹车距离。刹车距离是分析、处理道路交通事故的一个重要原因。
请看下面一个道路交通事故案例:
甲、乙两车在限速为40km/h的湿滑弯道上相向而行,待望见对方。同时刹车时已经晚了,两车还是相撞了。事后经现场勘查,测得甲车的刹车距离是12m,乙车的刹车距离超过10m,但小于12m。根据有关资料,在这样的湿滑路面上,甲车的刹车距离s甲(m)与车速x(km/h)之间的关系为s甲=0.1x+0.01x2,乙车的刹车距离s乙(m)与车速x(km/h)之间的关系为s乙= 。
教师提问:
1、你知道甲车刹车前的行驶速度吗?甲车是否违章超速?
2、你知道乙车刹车前的行驶速度在什么范围内吗?乙车是否违章超速?
学生思考!教师引导。
对于二次函数s甲=0.1x+0.01x2:
(1)当s甲=12时,我们得到一元二次方程0.1x+0.01x2=12。请谈谈这个一元二次方程这个一元二次方程的实际意义。
(2)当s甲=11时,不经过计算,你能说明两车相撞的主要责任者是谁吗?
(3)由乙车的刹车距离比甲车的刹车距离短,就一定能说明事故责任者是甲车吗?为什么?
生甲:我们能知道甲车刹车前的行驶速度,知道甲车的刹车距离,又知道刹车距离与车速的关系式,所以车速很容易求出,求得x=30km,小于限速40km/h,故甲车没有违章超速。
生乙:同样,知道乙车刹车前的行驶速度,知道乙车的刹车距离的取值范围,又知道刹车距离与车速的关系式,求得x在40km/h与48km/h(不包含40km/h)之间。可见乙车违章超速了。
同学们,从这个事例当中我们可以体会到,如果二次函数y= (a0)的某一函数值y=m。就可利用一元二次方程 =m,确定它所对应得x值,这样,就把二次函数与一元二次方程紧密地联系起来了。
下面看下面的这道例题:
当路况良好时,在干燥的路面上,汽车的刹车距离s与车速v之间的关系如下表所示:
v/(km/h) 40 60 80 100 120
s/m 2 4.2 7.2 11 15.6
(1)在平面直角坐标系中描出每对(v,s)所对应的点,并用光滑的曲线顺次连结各点。
(2)利用图像验证刹车距离s(m)与车速v(km/h)是否有如下关系:
(3)求当s=9m时的车速v。
学生思考,亲自动手,提高学生自主学习的能力。
教师提问,学生回答正确答案,教师再进行讲解。
课上练习:
某产品的成本是20元/件,在试销阶段,当产品的售价为x元/件时,日销量为(200-x)件。
(1)写出用售价x(元/件)表示每日的销售利润y(元)的表达式。
(2)当日销量利润是1500元时,产品的售价是多少?日销量是多少件?
(3)当售价定为多少时,日销量利润最大?最大日销量利润是多少?
课堂小结:本节课主要是利用函数求极值的问题,解决此类问题时,一定要考虑到本题的实际意义,弄明白自变量的取值范围。在画图像时,在自变量允许取的范围内画。
板书设计:
二次函数的应用(3)
一、案例 二、例题
分析: 练习:
总结:
数学网
教学目标:
1、使学生进一步理解二次函数的基本性质;
2、渗透解析几何,数形结合,函数等数学思想。培养学生发现问题解决问题,及逻辑思维的能力。
3、使学生参与教学过程,通过主体的积极思维,体验感悟数学。逐步建立数学的观念,培养学生独立地获取知识的能力。
教学重点:初步理解数形结合的数学思想
教学难点:初步理解数形结合的数学思想
教学用具:微机
教学方法:探究式、小组合作学习
教学过程:
例1、已知:抛物线y=x2-(m2-1)x-2m2-2
⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点
⑵m取什么实数时,两交点间距离最短?是多少?
解:
△ =(m2-1)2+4(2m2+2)
=m4-2m2+1+8m2+8
=m4+6m2+9
=(m2+3)2
m2≥0
∴m2+3>0
∴△>0
∴抛物线与x轴有两个交点
问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点。(能否从数和形两方面说明)
设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高。②学会合作,消除个人中心。③发现自我,提高参与度。④弘扬个体的主体性,形成健康,丰富的个性。
数:点在曲线上,点的坐标满足曲线的方程。反之,曲线方程的每一个实数解对应的点都在曲线上。抛物线与x轴的交点,既在抛物线上,又在x轴上。所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式。设交点坐标为(x,y)
∴
这样交点问题就转化成求这个二元二次方程组的解。代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题。根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根。∴y =ax2+bx+c
y =0
有两个不等的实数解
∴抛物线与x轴交于两个不同的点。
形:顶点在x轴上方,且开口向下。或者顶点在x轴下方,且开口向上。
设计意图:渗透解析几何的基本思想
使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性。掌握数形结合,分类讨论的思想方法。逐步学会数学的思维。
转化成代数语言为:
小结:第一种方法,根据解析几何的基本思想。将求曲线的交点问题,转化成求方程组的解的问题。
第二种方法,借助于图象思考问题,比较直观。发现规律后,再用数学的符号语言将其形式化。这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法。
思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系。
设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程。使主体积极地参与到学习中去。以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念。
⑵m取什么实数时,两交点间距离最短?是多少?
解:设二次函数与x轴的两交点为(x1,0),(x2,0)
解法㈠ 由⑴可知m为任何实数时, 都有△>0
解①
∴ x1+x2=m2-1
x1·x2=-2(m2+1)
∴│x2-x1│=
=
=
=
=m2+3
∴当m =0时,两交点最小距离为3
这里两交点间距离是m的函数
设计意图:培养学生的问题意识。在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法。培养学生独立地获取数学知识的能力。渗透函数思想
问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明。
设x1、x2 为ax2+bx+c =0的两根
可以推出:
还可以理解为顶点到x轴距离最短。
设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构。
小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法。
解法㈡:用十字相乘法或求根公式法求根。
思考:一元二次方程与二次函数的关系。
思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?
练习:
观察函数 的图象,回答:
(1)y>0时,x的取值范围如何?
(2)y=0时,x取什么值?
(1)y
小结:数与形是数学中相互依赖的两个方面。图形比较直观,可以启发思路;而数学的严格证明也是必不可少的。直观性和形式化是数学的两重性。
探究活动
探究问题:
欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把。
(1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?
(2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?
(3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?
(4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)
解:(1)(14—8) (元)
(2)638元、728元、748元、792元、792元、750元。
(3)设降价 元时利润最大,最大利润为 元
=
=
=
∴ 当 时, 有最大值
元
(4)设降价 元时利润最大,利润为 元
(其中 )。
化简,得 。
,
∴ 当 时, 有最大值。
∴ 。
数学教案-二次函数y=ax2+bx+c 的图象
在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
一、 重视每一堂复习课 数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
二、 重视每一个学生 学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求
三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点
四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
2二次函数教学方法??
一、 立足教材,夯实双基:进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要。并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现
二、 立足课堂,提高效率:做到教师入题海,学生出题海。教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。
三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果。
四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要。因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感。这样他们才会更有兴趣的学习下去。
3二次函数教学方法二
1、质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。
2、二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。
3、学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。
4、初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。
4二次函数教学方法三
1、教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。
2、教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。
3、教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事;
4、教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。
读书破万卷下笔如有神,以上就是差异网为大家整理的10篇《《二次函数》数学教案》,希望可以启发您的一些写作思路。
二次函数教案篇7
学习目标:
1、能够分析和表示变量间的二次函数关系,并解决用二次函数所表示的问题。
2、用三种方式表示变量间二次函数关系,从不同侧面对函数性质进行研究。
3、通过解决用二次函数所表示的问题,培养学生的运用能力
学习重点:
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。
能够根据二次函数的不同表示方式,从不同的侧面对函数性质进行研究。
学习难点:
能够分析和表示变量之间的二次函数关系,并解决用二次函数所表示的问题。
学习过程:
一、学前准备
函数的三种表示方式,即表格、表达式、图象法,我们都不陌生,比如在商店的广告牌上这样写着:一种豆子的售价与购买数量之间的关系如下:
x(千克) 0 0。5 1 1。5 2 2。5 3
y(元) 0 1 2 3 4 5 6
这是售货员为了便于计价,常常制作这种表示售价与数量关系的表,即用表格表示函数。用表达式和图象法来表示函数的情形我们更熟悉。这节课我们不仅要掌握三种表示方式,而且要体会三种方式之间的联系与各自不同的特点,在什么情况下用哪一种方式更好?
二、探究活动
(一)合作探究:
矩形的周长是20cm,设它一边长为 ,面积为 cm2。 变化的规律是什么?你能分别用函数表达式、表格和图象表示出来吗?
交流完成:
(1)一边长为x cm,则另一边长为 cm,所以面积为: 用函数表达式表示: =________________________________。
(2) 表格表示:
1 2 3 4 5 6 7 8 9
10—
(3)画出图象
讨论:函数的图象在第一象限,可是我们知道开口向下的抛物线可以到达第四象限和第三象限,思考原因
(二)议一议
(1)在上述问题中,自变量x的取值范围是什么?
(2)当x取何值时,长方形的面积最大?它的最大面积是多少?你是怎样得到的?请你描述一下y随x的变化而变化的情况。
点拨:自变量x的取值范围即是使函数有意义的自变量的取值范围。请大家互相交流。
(1)因为x是边长,所以x应取 数,即x 0,又另一边长(10—x)也应大于 ,即10—x 0,所以x 10,这两个条件应该同时满足,所以x的取值范围是 。
(2)当x取何值时,长方形的面积最大,就是求自变量取何值时,函数有最大值,所以要把二次函数y=—x2+10x化成顶点式。当x=— 时,函数y有最大值y最大= 。当x= 时,长方形的面积最大,最大面积是25cm2。
可以通过观察图象得知。也可以代入顶点坐标公式中求得。。
(三)做一做:学生独立思考完成p62,p63的函数表达式,表格,图象问题
(1)用函数表达式表示:y=________。
(2)用表格表示:
(3)用图象表示:
三、学习体会
本节课你有哪些收获?你还有哪些疑问?
四、自我测试
1、把长1。6米的铁丝围成长方形abcd,设宽为x(m),面积为y(m2)。则当最大时,所取的值是( )
a 0。5 b 0。4 c 0。3 d 0。6
2、两个数的和为6,这两个数的积最大可能达到多少?利用图象描述乘积与因数之间的关系。
3、把一根长120cm的铁丝分为两部分,每一部分均弯曲成一个正方形,它们的面积和是多少?它们的面积和的最小值是多少?
(选作题)边长为12的正方形铁片,中间剪去一个边长为x(cm)的小正方形铁片,剩下的四方框铁片的面积y(cm2)与x(cm)之间的函数表达式为
二次函数教案篇8
中学美术课水彩画技法教学
摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。这里,笔者将结合自己的教学经验,来谈一谈水彩画技法教学的一点心得,以期大方之家给予批评指正。
关键词:中学美术课;水彩画;技法教学
一、水彩画技法指导
学生在画水彩画之前需要有这样的理念:从整体着眼,从局部入手。在脑海中必须有画面的整体构思与布局,在这个大前提下,再将画面有效地分成若干个小部分,逐一完成。具体过程下面将分条阐述。
(一)画面勾勒轮廓阶段
第一步就是教师指导学生先勾勒出素描稿,整体与局部的分配情况需要合理、恰切。为了提升上色的准确性、恰切性,整个过程需要运用铅笔来完成,并且在素描的过程中,需要有效地表现反光、高光、投影以及明暗交界线等。其中投影、暗部需要淡淡地用铅笔进行标记。这个素描过程至关重要,成为关键的开端。
(二)画面着色阶段
接下来就需要用刷子蘸上清水,在画纸上刷一遍,让水完全浸湿画纸。吃水饱和的画纸,在短时间内,就不会立刻干燥,在这种情况下,才有助于具体干湿画法的实践、运用。
水彩的透明特点需要被全面地观照、审视,主要着色程序是由浅至深,特定物体的受光面需要先画出来,紧接着再对其背光面进行绘画。只有这样才能够有效地表现水彩画的明调与暗调。最后,将特定物体颜色最深的细部完成。可以说水彩的表现方法,通常来说,主要分为干画法、湿画法以及干湿并用法。在中学美术教学中,我们提倡采用干湿并用法,即有的地方使用干画法,而有的地方则采用湿画法。这种方法易于被中学生接受,并且表现力相对较强。再者,我们可以有效利用湿画法来绘画每一个客观物象。
最后就是画面的整理、完善环节。局部独立物象的逐一绘画,这种罗列可能会导致整个画面的融合程度不足,进而容易产生层次方面的误差感,给观赏者一种拼凑的印象。鉴于此,教师必须指导学生进行画面的整体处理,旨在让每一个局部都被统摄到整个画面中去,成为一个部分分割的成分。例如前景特定物象应该是实的,需要在这个物象的主要部位,将轮廓线凸显。而后面的特定物象应该是虚的。较之前者,后者需要淡化其色彩和形体方面的处理,只有这样才能够创设出层次分明、立体感较强的画面效果。如果整个画面色彩显得有些乱,就应该在基调的范围内进行有效整理。如果整个画面较为单调的话,就应该将环境色恰当地融入其中,进而色彩的丰富感就可以被提升。
二、重要注意事项强调
在学生对范画的欣赏、感悟过程中,教师需要对每一张画,它的具体画法、运用色彩等方面进行全面而细致地解读,这样才能使得学生对水彩画的特点、画法有一个整体的了解和体认。同时,需要提醒学生:如果调色过多,就可能丧失水彩画明快、透明的风格特征。而且涂色需要争取一次性完成,至多不可以超过三次,涂色越多,整个画面就会变得更为脏乱。鉴于此,在涂色之前,教师必须讲清楚调色与控制画笔中水分的具体措施,并且让学生全面把握绘画所要使用的工具,只有充分熟悉工具的使用方法,才能谈及具体涂色过程的开展。
需要强化实践教学,即可以将学生带到大自然中去绘画。教师可以一边绘画,一边讲解,在此过程中,将特定物象的具体画法,普遍存在的问题以及解决问题的办法,一一告诉学生。教师的这种示范教学,不仅可以给予学生直观的感受,同时也让学生了解了具体的绘画方法,如何规避不该出现的失误。另外,对于学生的作品不足之处,教师需要给予亲自改正,这种教学方法会让学生的绘画技巧迅速提升的。
另外,教师也可以将水彩画的绘画技巧编成一系列的口诀,这样,学生记忆与掌握水彩画相关技法将会变得事半而功倍。
三、水彩画技法教学示例
这里以水彩风景写生为示例对象。在写生的起初,需要力求一次性完成天空的绘画,当整体基调确定之后,余下的景物色彩需要与之协调搭配。当天空的绘画尚未“风干”之前,需要立刻将远山,抑或者是远树勾画出来。这样就会使得它与天空叠加的部分自然融合,避免了分离之感的产生。这样就契合了远虚近实的绘画要求。
画每一个特定物象之时,需要从左到右刷一遍清水,因为室外的空气是比较干燥的,这样的环境下,如果不刷水,湿画法则难以为继。倒映在水中的树木和房屋需要在画纸湿条件下,立刻涂色,进而产生朦朦胧胧的倒影效果。待画面干了之后,在使用干画法,小心翼翼地在水面上画出几道波纹来,这样房屋和树木的倒影就显得愈加真实生动了。同时,水岸上的物象,需要使用干画法进行绘画,这样就会使得这些物象更为实在、凸显。进而与水中倒影构成鲜明的对比。
画面的主体部分需要着力进行刻画,进而让整个画面具有凝聚力。在让学生充分领悟水彩画技法的同时,还需要让学生懂得艺术地处理画面的空间。最后,也就是对整个画面进行整理,湿画法的缺陷在于使得画面显得很“碎”,因此需要在画面的色彩和层次方面进行整体的调整,这样,整个画面就会变得和谐统一了。
参考文献
二次函数教案8篇相关文章:
★ 敲敲乐教案8篇
★ 黄鹂画教案8篇
★ 幼儿跳绳教案8篇
★ 过年了教案8篇
★ 泥土的教案8篇
★ 数图形教案8篇
★ 游子吟教案8篇
★ 武术课教案8篇