初中函数的教案8篇

时间:
Trick
分享
下载本文

一份注重情感的教案能够帮助学生建立良好的价值观和人际关系,制定教案能够帮助教师更好地进行课堂管理,提升课堂氛围,怎么写范文网小编今天就为您带来了初中函数的教案8篇,相信一定会对你有所帮助。

初中函数的教案8篇

初中函数的教案篇1

一、素质目标

(一)知识教学点:

1.使学生了解一元二次方程及整式方程的意义;

2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

(二)能力训练点:

1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;

2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.

二、教学重点、难点

1.教学重点:一元二次方程的意义及一般形式.

2.教学难点:正确识别一般式中的“项”及“系数”.

三、教学步骤

(一)明确目标

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的`能力.

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm 2 的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

教师启发学生设未知数、列方程,经整理得到方程x 2 -70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

(二)整体感知

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

(三)重点、难点的学习及目标完成过程

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.

2.引例:剪一块面积为150cm 2 的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发学生设未知数列方程,并整理得方程x 2 +5x-150=0,此方程和章前引例所得到的方程x 2 +70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x 2 ;

(2)7x 2 +6=2x(3x+1);

(3)

(4)6x 2 =x;

(5)2x 2 =5y;

(6)-x 2 =0

4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

一元二次方程的一般形式:ax 2 +bx+c=0(a≠0).ax 2 称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

一般式中的“a≠0”为什么?如果a=0,则ax 2 +bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

5.例1? 把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

6.练习1:教材p.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.

8mx-2m-1=0;(4)(b 2 +1)x 2 -bx+b=2;(5)2tx(x-5)=7-4tx.

教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.

(四)总结、扩展

引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

3.一元二次方程的意义与一般形式ax 2 +bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

四、布置作业

1.教材p.6 练习2.

2.思考题:

1)能不能说“关于x的整式方程中,含有x 2 项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

五、板书设计

第十二章? 一元二次方程

12.1用公式解一元二次方程

1.整式方程:

4.例1:

2.一元二次方程:

3.一元二次方程的一般形式:

5.练习:

六、课后习题参考答案

教材p.6a2.

教材p.6b1、2.

1.(1)二次项系数:ab? 一次项系数:c? 常数项:d.

(2)二次项系数: m-n? 一次项系数:0? 常数项:m+n.

2.一般形式:(m+n)x 2 +(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.

思考题

(1)不能.如x 3 +2x 2 -4x=5.

(2)一元三次方程:只含有一个未知数,且未知数的最高次数是3,这样的整式方程叫做一元三次方程.一般形式:ax 3 +bx 2 +cx+d=0(a≠0).

一元四次方程:只含有一个未知数,且未知数的最高次数是4,这样的整式方程叫做一元四次方程.一般形式:ax 4 +bx 3 +cx 2 +dx+e=0(a≠0).

初中函数的教案篇2

这节课的内容是义务课程标准教材数学九年级下册锐角三角函数——正弦。我将从以下几个方面来就本节课的教学进行解说。

一、教材分析

教材所处的地位及作用:

本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,这对学生来说是个全新的领域。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.

二、学情分析

1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础,学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。

三、教学目标

1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;

2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;

3、经历锐角正弦意义的探索过程,体会从特殊到一般的'研究问题的思路和数形结合的思想方法;

4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。

四、重点、难点

1、重点:锐角正弦的定义及应用;

2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.

3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。

五、教法及学法

本节课采用情境引导和探究发现教学法,通过适宜的问题情境引发新的认知冲突,建立知识间的联系。同时采用多媒体辅助教学,以直观生动地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

六、教学过程

为了实现本节的教学目标,教学过程分为以下六个环节:

(一)复习旧知,情境引入(二)合作探究,获得新知:(三)巩固训练,落实双基

(四)强化提高,培养能力(五)小结归纳,拓展深化(六)反馈练习,自主评价。

下面就几个主要环节进行解说

(一)复习旧知,情境引入

(二)先让学生回顾直角三角形知识,再从铺设水管引入30°的直角三角形中的边与角的关联。

(二)合作探究,获得新知:

先让学生猜想,再利用几何画板演示,在直角三角形中,任意角度的锐角的对边和斜边的比和这个角的关系。得出结论:

当∠a的度数一定时,∠a的对边和斜边的比值是一个定值。这个比值随着角度的变化而变化,当角度一定时,有唯一和它对应的比值。所以∠a的对边和斜边的比值是关于∠a度数的函数。

再引出课题和正弦概念,给出正弦的含义和表示方法。认识几个特殊角的正弦值。

(三)巩固训练

讲解一道求正弦值的例题。

(四)强化提高,培养能力

出示三道提高题,第一道是关于直接利用正弦值求斜边的题,然后进行变式,第二题是关于不是直角三角形中求正弦的题,第三题是关于用不同的方法求一个锐角的正弦值。

(五)小结归纳,拓展深化

初中函数的教案篇3

一、教学目标

①运用丰富的实例,使学生在具体情境中领悟函数概念的意义,了解常量与变量的含义、能分清实例中的常量与变量,了解自变量与函数的意义、

②通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力、

③引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情、在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心、

二、教学重点与难点

重点:函数概念的形成过程、

难点:正确理解函数的概念、

三、教学准备

每个小组一副弹簧秤和挂件,一根绳子、

四、教学设计

(一)提出问题:

1、汽车以60千米/时的速度匀速行驶、行驶里程为s千米,行驶时间为t小时、先填写下面的表,再试着用含t的式子表示s:

t(小时) 1 2 3 4 5

s(千米)

2、已知每张电影票的售价为10元、如果早场售出150张,日场售出205张,晚场售出310张,那么三场电影的票房收入各为多少元?设一场电影售出x张票,票房收人为y元,怎样用含x的式子表示y?

3、要画一个面积为10cm2的圆,圆的半径应取多少?画面积为20cm2的圆呢?怎样用含圆面积s的式子表示圆半径r?

注:(1)让学生充分发表意见,然后教师进行点评、

(2)挖掘和利用实际生活中与变量有关的问题情景,让学生经历探索具体情景中两个变量关系的过程,直接获得探索变量关系的体验、

(二)动手实验

1、在一根弹簧秤上悬挂重物,改变并记录重物的质量,

观察并记录弹簧长度的变化,填入下表:

悬挂重物的质量m(kg)

弹簧长度l(cm)

如果弹簧原长10cm,每1kg重物使弹簧伸长0、5cm,怎样用重物质量m(kg)的式子表示受力后的弹簧长度l(cm)?

2、用10dm长的绳子围成矩形、试改变矩形的长,观察矩形的'面积怎样变化,记录不同的矩形的长的值,计算相应的矩形面积的值,探索它们的变化规律(用表格表示)、设矩形的长为xdm,面积为sdm2,怎样用含x的式子表示s?

注:分组进行实验活动,然后各组选派代表汇报、

通过动手实验,学生的学习积极性被充分调动起来,进一步深刻体会了变量间的关系,学会了运用表格形式来表示实验信息、

五、探究新知

(一)变量与常量的概念

1、在学生动手实验并充分发表自己意见的基础上,师生共同归纳:上面的问题和实验都反映了不同事物的变化过程、其中有些量(时间t、里程s、售出票数x、票房收入y等)的值是按照某种规律变化的在一个变化过程中,数值发生变化的量,我们称之为变量、也有些量是始终不变的,如上面问题中的速度60(千米/时)、票价10(元)等,我们称之为常量、

2、请具体指出上面这些问题和实验中,哪些量是变量,哪些量是常量、

3、举出一些变化的实例,指出其中的变量和常量、

注:分组活动、先独立思考,然后组内交流并作记录,最后各组选派代表汇报、

培养学生主动参与、合作交流并能用数学的眼光看待世界的意识,提高观察、分析、概括和抽象等的能力、

(二)函数的概念

1、在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?

师生分析得出:上面的每个问题和实验中的两个变量互相联系、当其中一个变量取定一个值时,另一个变量就有惟一确定的值、

2、分组讨论教科书p、7 “观察”中的两个问题、

注:使学生加深对各种表示函数关系的表达方式的印象、

3、一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么,我们就说x是自变量,y是x的函数、如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值、例如在问题1中,时间t是自变量,里程s是t的函数、t=1时,其函数值s为60,t=2时,其函数值s为120、

同样,在心电图中,时间x是自变量,心脏电流y是x的函数;

在人口统计表中,年份x是自变量,人口数y是x的函数、当x=1999时,函数值y=12、52、

六、巩固新知

下列各题中分别有几个变量?你能将其中的某个变量看成是另一变量的函数吗?

1、右图是北京某日温度变化图

2、如图,已知菱形abcd的对角线ac长为4,bd的长在变化,设bd的长为x,则菱形的面积为y= ×4×x

3、国内平信邮资(外埠,100克内)简表:

信件质量m/克o

邮资y/元o、80 1、60 2、40

注:巩固变量与函数的概念,让学生充分体会到许多问题中的变量关系都存在着函数关系,初步了解函数的三种表示方法、

七、总结归纳

1、常量与变量的概念;

2、函数的定义;

3、函数的三种表示方式、

注:通过总结归纳,完善学生已有的知识结构、

八、布置作业

1、必做题:教科书p、18习题11、1第1题、

2、选做题:教科书p、18习题11、1第2题、

3、备选题:

(1)下图是某电视台向观众描绘的一周之内日平均温度的变化情况:

①图象表示的是哪两个变量之间的关系?哪个是自变量?哪个是函数?

②这周哪天的日平均温度最低?大约是多少度?哪天的日平均温度最高?大约是多少度?

③14、15、16日的日平均温度有什么关系?

④点a表示的是哪天的日平均温度?大约是多少度?

⑤说说这一周的日平均温度是怎样变化的

(2)如右图所示,梯形上底的长是x,下底的长是15,高是8、

①梯形面积y与上底的长x之间的关系式是什么?并指出其中的变量和常量、自变量与函数、

②用表格表示当x从10变到20时(每次增加1),y的相应值、

③当x每增加1时,y如何变化?说说你的理由、

④当x=0时,y等于多少?此时它表示的是什么?

(3)研究表明,土豆的产量与氮肥的施用量有如下关系:

施肥量(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量(吨/公顷) 15、18 21、36 25、72 32、29 34、03 39、45 43、15 43、46 40、83 30、75

①上表反映的是哪两个变量之间的关系?指出其中的自变量和函数、

②当氮肥的施用量为101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

③根据表中的数据,你认为氮肥的施用量为多少比较适宜?说说你的理由、

④简单说一说氮肥的施用量对土豆产量的影响、

九、设计思想

变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一大飞跃、因此,设计本课时应根据学生的认知基础,创设丰富的现实情境,使学生从中感知变量与函数的存在和意义,体会变量之间的相互依存关系和变化规律、遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则,引导学生探究新知,引导学生在观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,并在概念的形成过程中培养学生的观察、分析、抽象和概括等能力、同时在引导学生探索变量之间的规律,抽象出函数概念的过程中,要注重学生的过程经历和体验,让学生领悟到、现实生活中存在着多姿多采的数学问题,并能从中提出问题、分析问题和解决问题、还要培养一种团队合作精神,提高探索、研究和应用的能力,使学生真正成为数学学习的主人、

初中函数的教案篇4

教学目标:

会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的'综合题。

重点难点:

重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:

一、例题精析,强化练习,剖析知识点

用待定系数法确定二次函数解析式.

例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点p(-1,-8),且过点a(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)

(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)

当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)

强化练习:已知二次函数的图象过点a(1,0)和b(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;

(2)若二次函数的图象与x轴还有异于点a的另一个交点,求m的取值范围。

二、知识点串联,综合应用

例:如图,抛物线y=ax2+bx+c过点a(-1,0),且经过直线y=x-3与坐标轴的两个交

初中函数的教案篇5

一、教材分析:

1、教材所处的地位:

二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。本章“二次函数”的学习也是从以上几个方面展开的。本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础。

2、教学目的要求:

(1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;

(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;

(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。

(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。

3、教学重点和难点

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:

重点:

(1)二次函数的概念

(2)能够表示简单变量之间的二次函数关系.

难点:

具体的分析、确定实际问题中函数关系式

二、教法、学法分析:

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

1、教法研究

教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、学法研究

初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。

3、教学方式

(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。

(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。

(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。

三、教学流程分析:

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

1、温故知新—揭示课题

由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。

2、自我尝试、合作探究—探求新知

通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。

3、小试身手—循序渐进

本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。

4、课堂回眸—归纳提高

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

5、课堂检测—测评反馈

共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。

6、作业布置

作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。

四、对本节课的一点看法

通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。

初中函数的教案篇6

教学目标

(1)理解两圆公切线在解决有关两圆相切的问题中的作用,辅助线规律,并会应用;

(2)通过两圆公切线在证明题中的应用,培养学生的分析问题和解决问题的能力。

教学重点

会在证明两圆相切问题时,辅助线的引法规律,并能应用于几何题证明中。

教学难点

综合知识的灵活应用和综合能力培养。

教学活动设计

(一)复习基础知识

(1)两圆的公切线概念。

(2)切线的性质,弦切角等有关概念。

(二)公切线在解题中的应用

例1 如图,⊙o 1和⊙o 2外切于点a,bc是⊙o 1和⊙o 2的公切线,b,c为切点。若连结ab、ac会构成一个怎样的三角形呢?

观察、度量实验(组织学生进行)

猜想:(学生猜想)∠bac=90°

证明:过点a作⊙o 1和⊙o 2的内切线交bc于点o。

∵oa、ob是⊙o 1的切线,

∴oa=ob。

同理oa=oc。

oa=ob=oc。

∴∠bac=90°。

反思:(1)公切线是解决问题的桥梁,综合应用知识是解决问题的关键;(2)作两圆的公切线是常见的一种作辅助线的方法。

2 己知:如图,⊙o 1和⊙o 2内切于p,大圆的弦ab交小圆于c,d。

求证:∠apc=∠bpd。

分析:从条件来想,两圆内切,可能作出的辅助线是作连心线o 1 o 2,或作外公切线。

证明:过p点作两圆的公切线mn。

∵∠mpc=∠pdc,∠mpn=∠b,

∴∠mpc-∠mpn=∠pdc-∠b,

即∠apc=∠bpd。

反思:

(1)作了两圆公切线mn后,弦切角就把两个圆中的圆周角联系起来了。要重视mn的“桥梁”作用。

(2)此例证角相等的方法是利用已知角的关系计算。

拓展:(组织学生研究,培养学生深入研究问题的意识)

己知:如图,⊙o 1和⊙o 2内切于p,大圆⊙o 1的弦ab与小圆⊙o 2相切于c点。

是否有:∠apc=∠bpc即pc平分∠apb。

答案:有∠apc=∠bpc即pc平分∠apb。如图作辅助线,证明方法步骤参看典型例题中例4。

(三)练习

练习1、教材145练习第2题。

练习2、如图,已知两圆内切于p,大圆的弦ab切小圆于c,大圆的弦pd过c点。

求证:pa·pb=pd·pc。

证明:过点p作两圆的公切线ef

∵ ab是小圆的切线,c为切点

∴∠fpc=∠bcp,∠fpb=∠a

又∵∠1=∠bcp-∠a∠2=∠fpc-∠fpb

∴∠1=∠2∵∠a=∠d,∴△pac∽△pdb

∴pa·pb=pd·pc

说明:此题在例2题的拓展的基础上解得非常容易。

(三)总结

学习了两圆的公切线,应该掌握以下几个方面

1、由圆的轴对称性,两圆外(或内)公切线的交点(如果存在)在连心线上。

2、公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形。

3、常用的辅助线:

(1)两圆在各种情况下常考虑添连心线;

(2)两圆外切时,常添内公切线;两圆内切时,常添外公切线。

4、自己要有深入研究问题的意识,不断反思,不断归纳总结。

(四)作业教材p151习题中15,b组2。

探究活动

问题:如图1,已知两圆相交于a、b,直线cd与两圆分别相交于c、e、f、d。

(1)用量角器量出∠eaf与∠cbd的大小,根据量得结果,请你猜想∠eaf与∠cbd的大小之间存在怎样的关系,并证明你所得到的结论。

(2)当直线cd的位置如图2时,上题的结论是否还能成立?并说明理由。

(3)如果将已知中的“两圆相交”改为“两圆外切于点a”,其余条件不变(如图3),那么第(1)题所得的结论将变为什么?并作出证明。

初中函数的教案篇7

知识技能目标

1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2、利用反比例函数的图象解决有关问题。

过程性目标

1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

二、探究归纳

1、画出函数的图象。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

上述图象,通常称为双曲线(hyperbola)。

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k

1、双曲线的两个分支与x轴和y轴没有交点;

2、双曲线的两个分支关于原点成中心对称。

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

三、实践应用

例1若反比例函数的图象在第二、四象限,求m的值。

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1

解由题意,得解得。

例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k0,所以直线与y轴的交点在x轴的上方。解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k

例3已知反比例函数的图象过点(1,—2)。

(1)求这个函数的解析式,并画出图象;

(2)若点a(—5,m)在图象上,则点a关于两坐标轴和原点的对称点是否还在图象上?

分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上。

解(1)设:反比例函数的解析式为:(k≠0)。

而反比例函数的'图象过点(1,—2),即当x=1时,y=—2。

所以,k=—2。

即反比例函数的解析式为:。

(2)点a(—5,m)在反比例函数图象上,所以,

点a的坐标为。

点a关于x轴的对称点不在这个图象上;

点a关于y轴的对称点不在这个图象上;

点a关于原点的对称点在这个图象上;

例4已知函数为反比例函数。

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当—3≤x≤时,求此函数的最大值和最小值。

解(1)由反比例函数的定义可知:解得,m=—2。

(2)因为—2

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;

当x=—3时,y最小值=。

所以当—3≤x≤时,此函数的最大值为8,最小值为。

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象。

解(1)因为100=5xy,所以。

(2)x>0。

(3)图象如下:

说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

1、反比例函数的图象是双曲线(hyperbola)。

2、反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k

五、检测反馈

1、在同一直角坐标系中画出下列函数的图象:

(1);(2)。

2、已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

4、已知反比例函数经过点a(2,—m)和b(n,2n),求:

(1)m和n的值;

(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1

初中函数的教案篇8

1.说教材

本节内容是人民出版社出版的九年级《数学》下第26章第一节第二课时的内容。在此之前,学生已学习了二次函数的概念,对于函数的积累知识有一次函数和反比例函数。本节内容是对二次函数图像及其性质的学习,是后续研究二次函数图像的变换的基础。二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。

本节课中的教学重点利用描点法画出二次函数的图像,建构符合学生认知结构的知识体系,教学难点是运用数形结合的思想描述函数,根据解析式判断函数的开口方向、对称轴、顶点坐标。基于以上对教材的认识,根据数学课程标准,考虑到学生已有的认知结构与心理特征,制定如下的教学目标。

2.说目标

?知识与能力】:

理解二次函数的意义。

会用描点法画出函数y = ax2的图象。

知道抛物线的有关概念

会根据公式确定抛物线的顶点坐标、开口方向、对称轴以及抛物线与坐标轴的交点坐标。

?过程与方法】:

1、通过二次函数的教学进一步体会研究函数的一般方法,加深对于数形结合思想的认识。

2.综合运用所学知识、方法去解决数学问题,培养学生提出、分析、解决、归纳问题的数学能力,改善学生的数学思维品质。

?情感与态度目标】:

在数学教学中渗透美的,让学生感受二次函数图像的对2

称之美,激发学生的学习兴趣。认识到数学源于生活,用于生活的辩证观点。

3.说教学方法

教法选择与教学手段:基于本节课的特点是学习新知及其综合运用,应着重采用复习与总结的教学方法与手段,先从一次函数、反比例函数的图像复习入手,通过提问思考、归纳总结、综合运用等形式对二次函数图像及其性质进行有针对性的、系统性的教学。教学的模式为学生思考,讨论,教师分析,演示、师生共同总结归纳。

利用白板的动态画板功能,画出不同的二次函数图像,进行分析比较和归纳。

学法指导:让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

最后,我来具体谈一谈本节课的教学过程。

4.说教学过程

(一)为对二次函数图像及其性质的相关知识进行重构做准备。通过回忆复习一次函数和反比例函数图像及其性质等相关知识引入新课。利用描点法画出二次函数的图象,总结规律,会根据公式确定抛物线的顶点坐标、开口方向、对称轴。说出a为何值时y随x增大而增大(增大而减小),引导学生掌握用描点法画出二次函数的图象,能从图象上认识二次函数的性质。运用联想、概括方法对二次函数图像及其性质的相关知识进行梳理,领悟数形结合的思想方法,发展学生的化归迁移的数学思维,培养学生的转化能力。

(二)通过对二次函数图像及其性质的学习,采用学生思考,教师分析,解题小结三个环节构成的练习题讲解模式,巩固二次函数图像及其性质的基本题目的一般解题方法,并进一步研究二次函数图像及其性质的应用。

(三)反思概括,方法总结

总结本节课的知识点、重点和难点,着重理解二次函数图像及其性质的相关知识和基本解题方法,领悟数形结合的数学思想方法,学会用化归思想,解决实际问题。培养学生由题及法,由法及类的数学总结归纳方法。

(四)作业

课后通过练习来巩固本节课所复习的知识点、重点和难点,强化教学目标。

各位老师,以上所说只是我预设的一种方案,但课堂上是千变万化的,会随着学生和教师的灵性发挥而随机生成的,预设效果如何,最终还有待于课堂教学实践的检验。本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢!

初中函数的教案8篇相关文章:

初中生活是酸的作文8篇

给初中老师的演讲稿8篇

我期待的初中作文600字8篇

初中快毕业的演讲稿模板8篇

三分钟的演讲稿初中作文8篇

我的老师作文300字初中作文推荐8篇

初中生活是酸的作文优质8篇

初中我的老师作文600字作文8篇

家乡的水作文600字初中作文精选8篇

初中有关青春的演讲稿8篇

初中函数的教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
121874