小学比例的教案7篇

时间:
Indulgence
分享
下载本文

认真准备教案,能够让教师在课堂中更好地关注到每一个学生的个体差异,教案的清晰结构使教师在授课时更加自信,减少了临场的紧张感,下面是怎么写范文网小编为您分享的小学比例的教案7篇,感谢您的参阅。

小学比例的教案7篇

小学比例的教案篇1

教学目标:

1.通过感知生活中的事例,理解并掌握反比例的含义,经初步判断两种相关联的量是否成反比例

2.培养学生的逻辑思维能力

3.感知生活中的数学知识

重点难点

1.通过具体问题认识反比例的量。

2.掌握成反比例的量的变化规律及其 特征

教学难点:

认识反比例,能根据反比例的意义判断两个相关联的`量是不是成反比例。

教学过程:

一、课前预习

预习24---26页内容

1、什么是成反比例的量?你是怎么理解的?

2、情境一中的两个表中量变化关系相同吗?

3、三个情境中的两个量哪些是成反比例的量?为什么?

二、展示与交流

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律

小学比例的教案篇2

教学内容:六年制小学数学第十二册课本第55页例1.例2.作业本第31(29)。

教学目标:1.使学生理解比例的意义。

2.使学生能应用比例尺的知识求平面图的比例尺,以及根据比例尺求图上距离和实际距离。

3.培养学生分析问题、解决问题的能力和创新能力。

教学重点:理解比例尺的意义。

教学难点:根据比例尺求图上距离和实际距离。

教具准备:多媒体课件一套。

教学过程:

一、问题的情景:

1. 出示邮票。问:你能同样大小的把它画在图纸上吗?

让同学们画一画,再拿出邮票的长,比一比,怎么样?

归纳:(同样长)得:图上的长和实际的长的比是1:1。

2. 教室的长是9米,你能同样长的画在图纸上吗?更大一些呢?

如果操场的长,整个中华人民共和国,能完全一样画在平面图上吗?(不能),想个什么方法(窍门)可画上去了?

3. 让生猜想:(出示学校平面图)图上操场的长和实际长的比,还会是1:1吗?大约是几比几?

4. 导入新课:人们在绘制地图和平面图时,往往因为纸的大小有限,不可能按实际的大小画在图纸上,经常需要把实际距离缩小一定的倍数以后再画成图。象手表等机器零件比较小,又得把实际长度扩大一定的倍数以后,才能画到图纸上去。这就.需要涉及到一种新的知识。也就是今天我们一起来研究比例尺的问题。

板书:比例尺

二、问题解决:

5. 一个教室长是9米,如果我们要画这个教室的平面图,为了看图和携带方便,就需要把实际距离缩小一定的倍数后画在平面图上,缩小多少倍由你自己决定,你打算设计:用几厘米表示9米。请四人小组讨论并设计。

6. 小组回报设计方案,教师选择以下四种方案。

(1).用9厘米表示9米

(2).用4.5厘米表示9米

(3).用3厘米表示9米

(4).用1厘米表示9米

7. 说说以上方案是图上距离比实际距离缩小了多少倍?

算一算,每幅图 图上距离和实际距离的比。

(1).9厘米9米=9900=1100

(2).4.5厘米9米=4.5900=1200

(3).3厘米9米=3900=1300

(4).1厘米9米=1900

8. 这四个比的前项代表什么?(图上距离),后项代表什么?(实际距离),我们把这样的比,叫比例尺。

齐读:比例尺是图上距离与实际距离的比,化简后得到最简整数比。

比例尺怎样求:(看上述四个比例式得出):

图上距离实际距离=比例尺 或 图上距离

实际距离

9. 讨论汇报:上面四幅图,比例尺是多少图最大?

比例尺是多少图再小?为什么?

10. 练习:

(1).甲、乙两座城市相距120千米,在地图上量得两城市的距离是4厘米。求这幅地图的比例尺。

(2).学校里修建运动场,在设计图上用25厘米长线段来表示操场的实际长度150米。求图上距离和实际距离的比。

(3).一张中国图,图上4厘米表示实际距离1040千米,求这幅地图的比例尺?

(4).一张紧密图纸中,图上1厘米表示实际1毫米,求这幅精密图纸的比例尺?

(观察精密零件如果要画在图纸上,怎么办?(放大)。那这幅精密图纸的比例尺会求吗?

上述四题分层练习,后讲评。

11. 比较(3)、(4)两题的比例尺有什么不同?

教师小结:一般把缩小图的比例尺写成前项是1的比,而把放大图的比例尺写成后项是1的长。

12. 比例尺有多少种表示方法?让生说一说

(常见的有:比的形式 分数的形式 线段形式)

三、问题的应用:

根据比例尺的'关系式,求实际距离。

(1).出示例2 在比例尺是130000000的地图上,量得上海到北京的距离是3.5厘米。上海到北京的实际距离大约是多少千米?

(学生独立解答,同时抽一生板演)

解:设上海到北京的实际距离为x厘米,

x=105000000

105000000厘米=1050千米。

答:上海到北京的实际距离大约是1050千米。

(2).分析讲述:

根据比例尺的计算公式,已知图上距离和比例尺求实际距离,用方程解。

(先设x,再根据比例尺的计算公式列出方程。)

(3).图上距离和实际距离的单位要统一,一般都统一为低级单位厘米。

(4)怎样设x,.教师指出:设未知数时,单位要与已知单位统一,后再化聚到问题单位。

(5)尝.试练习第57页试一试。

河西村到汽车站的实际距离是20千米,图上距离是5厘米,算出这幅地图的比例尺。汽车站到县城的图上距离是15厘米,实际距离是多少千米?

小学比例的教案篇3

教学内容:

教科书30到32页。

教学目标:

1、使学生理解比例尺的意义,并能求出平面图的比例尺和根据比例尺求出实际距离。并能应用解决生活中的实际问题。

2、 通过小组合作研讨、实践操作,培养学生的合作意识和创新思维的能力。

3、 通过教学情境,培养学生热爱祖国的思想感情。

教学过程

一、 导入新课

1、 同学们,今天老师请你们当回设计师,请大家将我们教室占地的平面图画在白纸上。(长8米、宽6米)

2、 请画好的将自己的作品贴在黑板上。有不一样的请你贴上来。

3、 按大小分类。(讨论后说明随意画的长方形不是教室的平面图)

4、 讨论:将这么大的教室画到图上你采用了什么办法?(缩小)。为什么这些图有大有小呢?

5、 分别请同学说说自己画的设想。

6、 在同学们贴上的纸上介绍图上距离、(画在图上的8厘米、6厘米就是图上距离)。实际距离(同学们量出的教室的长8米,宽6米就是实际距离。同学们缩小的倍数就是你这幅图的比例尺。请你写上自己的比例尺。

7、 板书课题。“认识比例尺”

二、 新课展??

1、自学课文

让学生看课本上的第56页,初步接触图上距离和实际距离的比叫做比例尺。比例尺=图上距离比实际距离

说明:我们所缩小的倍数,一般取图上距离与实际距离的比,为计算方便通常把比例尺写成前项是1的比。

改写自己所画的图的比例尺。

2、出示中国地图(投影)

t;1>找出这幅地图的比例尺:1:30000000

(电脑演示放大效果)

介绍线段比例尺。你能看懂它的意思吗?与数值比例尺比较。(线段比例尺操作性强的,便于估计)。

t;3>你能从地图上大致的估计上海到北京的距离吗?小组讨论、反馈。评价各种计算的方法。板书:图上距离∶比例尺=实际距离

t;5>小组反馈,评比优秀方案。

t;2>电脑课件演示。

t;4>根据讨论板书:

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1

三、 练习

1|试一试。

四、 作业:31页练一练。

小学比例的教案篇4

【学习内容】

?义务教育课程标准实验教科书 数学》(人教版)六年级下册第41页。

【教材分析】

“比例的基本性质”是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。

【设计理念】

数学学习是一个学生自发探究的过程,因此,要让学生经历“自主发现问题——自主提出猜想——自主实施验证——自主归纳结论”的过程掌握比例的基本性质;本课的设计旨在为学生的探究学习创设简洁、开放的情境,让学生充分经历探究过程,学会探索方法,体验数学思想,发展数学素养。

【学习目标】

1.进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

4 能根据乘法等式写出正确的比例。

【评价设计】

1.通过练习1检测目标1的达成;

2.通过练习1检测目标2的达成;

3.通过练习1、2、4检测目标3的达成.

4.通过练习3检测目标4的达成.

【学习重点】探索并掌握比例的基本性质。

【学习难点】 能运用比例的基本性质判断两个比能否组成比例。

【教学准备】课件

【学习过程】

一、认识比例各部分的名称

1、复习

(1)什么叫做比例?什么样的两个比才能成比例?

(2)应用比例的意义,判断下面的比能否组成比例。

6:15和8:20 0.5:0.4和2:25

2、介绍比例各部分的名称

4:5=8:10 中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。

3、你能说出下面比例的内项和外项各是多少吗?

(1)1.4: 1 = 7 :5

二、探究比例的基本性质

1、猜数

(1)老师这里也有一个比例“12∶□=□∶2”,不过它的两个內项看不清了,想一想,这两个内项可能是哪两个数?(如1和24,2和12,……)

(2)追问:正确吗?为什么?(求比值判断)

(3)还有不同答案吗?

(4)你能举出项不是整数的例子吗?

(5)这样的例子举得完吗?

2、猜想

仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积;两个內项的位置可以交换……)

3、验证

(1)是不是所有的比例都有这样的规律呢,有什么好办法?(举例验证)

(2)应该怎样举例呢?你有什么好方法?

示范:①任意写一个简单的比;②求出比值;③根据比值写出另一个比的一项,求出另一项;④组成比例;⑤算出外项的积和內项的积。

(3)合作要求

①前后4个同学为一个小组;

②每个同学写出一个比例,小组内交换验证。

③通过举例验证,你们能得出什么结论?

4、归纳

我们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。(板书:比例的基本性质)

5、完善

(1)如果用字母表示比例的四个项,即a:b=c:d,那么,比例的基本性质可以表示成什么?(ad=bc或bc=ad)

(2)老师这里也有一个比例0:3=0:4,可以吗?3:0=4:0呢?

(3)比例中两个比的后项都不能为0。

6、如果比例写成分数形式,这怎么相乘?(交叉相乘)

三、巩固练习

1、判断下面哪组中的两个比可以组成比例。

示范:6:3和8:5

先让学生尝试判断,再交流,明确思考方法。

应用比例的基本性质判断

(2)还可以用什么方法来判断?用求比值的方法判断能否组成比例可以吗?(将学生分两大组,分别用上述两种方法进行判断)

(3)这两种方法,你更喜欢哪种?为什么?

2、在比例中,两个外项的积等于两个內项的积,如果知道两个外项的积和两个內项的积,你会写比例吗?

某同学根据“2×9=3×6”写出了比例,猜猜他可能是怎么写得?请在练习本上写一写。

追问:你为什么写得那么块?有什么窍门吗?(强调有序思考)

补问:根据这个乘法等式,一共可以写多少个比例?

3、如果a×2=b×4,则a:b=( ):( );

如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?

那么a、b还可能是多少?你发现了什么?

4、猜猜我是谁?

6:( )=5: 4

延伸:如果把 “( )”改为“x”就是我们下节课要学习的知识:解比例。

四、分享收获 畅谈感想

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例?

小学比例的教案篇5

教学目标:

1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

教学难点:

运用比例尺的有关知识,学会解决生活中的一些实际问题。

教学准备:多媒体课件。

教学过程:

一、展示目标,引入本课。

二、探究新知,意义建构

1、看一看

下面几幅地图的比例尺分别是多少。

①中华人民共和国这幅地图的比例尺是多少?(1:6000000)

②安庆市这幅地图的比例尺是多少?(1:2500000)

③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

2、说一说

(1)比例尺1:100表示什么意思呢?

生:图上1厘米长的线段表示实际距离100厘米。

(2)在比例尺1:2000的地图上,图上距离1厘米,表示实际距离(2000)厘米。

(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。

3、议一议

(1)什么是比例尺呢?

图上距离和实际距离的比,叫做比例尺。

(2)比例尺怎样表示呢?

比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

(3)比例尺有什么特征呢?

①比例尺与一般的尺子不同,它是一个比,不带计量单位;

②图上距离和实际距离的单位是统一的;

③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

?意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的',自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。

三、拓展延伸,巩固新知

1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

70:3.5=700:35=20:1

答:这幅设计图纸的比例尺是20:1。

2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

32×6000000=192000000(厘米)192000000厘米=1920(千米)

答:广州到北京实际距离是1920千米。

五、总结新课,整理知识

通过今天的学习,你有什么收获呢?

板书设计:比例尺

比例尺=图上距离:实际距离

实际距离=图上距离×1厘米表示的实际距离

图上距离=实际距离÷1厘米表示的实际距离

小学比例的教案篇6

教学内容:比例的意义、基本性质,比例各部分名称,组比例。

教学目标:

1. 使学生理解比例的意义,认识比例各部分的名称。

2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。

教学重点:比例的意义和基本性质。

教学难点:理解比例的基本性质。

教学过程:

一、 复习

1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。

2、 求下面各比的比值,哪些比的'比值相等?

12:16 : 4.5:2.7 10:6

二、 新授

提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。

1、 比例的意义

出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

时间(时) 2 5

路程(千米) 80 200

从上不中可以看到,这辆汽车:

第一次所行台的路程和时间的比是____;

第二次所行驶的路程和时间的比是____;

这两个比的比值各是多少?它们有什么关系?

(1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。

板书:80:2=200:5 或 =

师:这样的式子,我们给它一个名字叫做比例。

(2) 口答

A、把复习第2题中两个比值相等的比用等号连起来。

B、用等号连接起来的式子叫做什么?

C、根据刚才的回答,你能说出什么叫比例吗?

(3) 小结。

A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。

B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。

(4) 练习,课本第10页做一做。

2、 比例的基本性质。

(1) 比例各部分的名称。

引导学生观察黑板上的例题:80:2=200:5

并自学课本

提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?

(2) 说出下面各比例的外项和内项?

6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8

(3) 计算:上面比例中的外项积与内项积。

(4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?

师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?

(5)你能得出什么结论?

三、 巩固练习

1、 完成第2页的做一做。

2、 完成第3页的做一做第1题。

四、 总结

1、 比例的意义和基本性质是什么?

2、 怎样判断两个比能否组成比例?

五、 作业

1、 完成练习四的第1-3题。

小学比例的教案篇7

教学目标:

1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

教学重、难点:

重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

难点:自主探究比例的基本性质。

教学准备:cai课件

教学过程:

一、复习、导入

1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

还记得怎样求比值吗?

2、 课件显示:算出下面每组中两个比的比值

⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

[评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

二、认识比例的意义

(一)认识意义

1、 指名口答上题每组中两个比的比值,课件依次显示答案。

师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

(课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

数学中规定,像这样的一些式子就叫做比例。(板书:比例)

[评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

(生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

(根据学生的回答,教师抓住关键点板书:两个比 比值相等)

同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

课件显示:表示两个比相等的式子叫做比例。

学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

[评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

(二)练习

1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

第一次

第二次

买练习本的钱数(元)

1.2

2

买的本数

3

5

(1)学生独立完成。

(2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

2、完成练习纸第一题。

一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

[评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

(引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

4、教学比例各部分的名称

(1) 课件出示: 3 : 5

前项 后项

(2) 课件出示:3 : 5 = 18 : 30

内项

外项

(3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

课件出示:3/5=18/30

[评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

5、小结、过渡:

刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

三、探究比例的基本性质

1、课件先出示一组数:3、5、10、6

再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

2、 独立思考,并在作业本上写一写。

学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

根据学生回答板书: 3×10=5×6 3:5=6:10

3:6=5:10

5:3=10:6

6:3=10:5

3、 引导发现规律

(1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

(2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

(3)学生先独立思考,再小组交流,探究规律。

(板书:两个外项的积等于两个内项的积。)

[评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

4、验证:是不是任意一个比例都有这样的规律?

⑴课件显示复习题(4组),学生验证。

⑵学生任意写一个比例并验证。

⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

[评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

四、 综合练习

完成练习纸2、3、4

附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

14 :21 和 6 :9

1.4 :2 和 5 :10

3、判断下面哪一个比能与 1/5:4组成比例。

①5:4 ② 20:1

③1:20 ④5:1/4

4、在( )里填上合适的数。

1.5:3=( ):4

=

12:( )=( ):5

[评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

五、全课总结(略)

小学比例的教案7篇相关文章:

小学数学比教案模板7篇

小学数学趣味数学教案7篇

小学健康教案7篇

小学综合与实践教案7篇

小学数学数学教案优质7篇

小学三年级《掌声》教案7篇

小学六年级音乐教案7篇

小学三年级信息教案7篇

小学课程教案通用7篇

小学防溺水主题班会教案7篇

小学比例的教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
115611